Exploring the realm of software is of utmost importance, particularly within the context of storage systems. It is anticipated that the value of these systems will shift from mere hardware to encompass the software that governs and enhances the overall functionality, presenting an opportunity to attract a wider customer base and achieve greater profitability. It is important for BESS players to cultivate these abilities at an early stage.
The battery management system (BMS) is frequently mistaken for the EMS. The BMS is a straightforward system that serves two purposes: 1) enabling or disabling battery operation and 2) ensuring the safety of the batteries. When initiating a BESS, the EMS will instruct the BMS to activate the batteries (establish the DC bus). The BMS will execute this command only if it detects a safe condition. During operation, if the BMS detects parameters that are exceeding their acceptable range, it will prompt the EMS to decrease power output (in cases where parameters breach fault thresholds, the BMS will activate the opening of rack contactors).
Anticipated advancements in utility-scale Battery Energy Storage Systems (BESS), which presently represent the majority of new capacity each year, are projected to witness a rapid growth rate of approximately 29 percent annually until the end of this decade. This trajectory positions utility-scale BESS as the fastest-growing segment among the three. Projections indicate that by 2030, annual utility-scale BESS installations could range from 450 to 620 gigawatt-hours (GWh), potentially securing up to a 90 percent market share of the total industry during that period (Exhibit 2).
In the subsequent section of the C&I sector, there exists critical infrastructure comprising telecommunication towers, data centers, and hospitals. Within this specific subset, temporary backup power is typically facilitated by lead-acid batteries through an uninterruptible power supply during instances of outages until the resumption of regular power or activation of diesel generators. Alongside the substitution of lead-acid batteries, lithium-ion BESS products offer a potential solution to reduce dependence on diesel generators, which are less eco-friendly. These products can be seamlessly integrated with sustainable energy sources like rooftop solar. Moreover, in specific instances, surplus energy stored in a battery could enable organizations to generate income through grid services. A number of telecommunications companies and proprietors of data centers are currently transitioning to BESS (Battery Energy Storage Systems) for their uninterrupted power supply needs, recognizing the added advantages that BESS offers.
I consent to receiving news and promotional material from Schneider Electric and its affiliated companies through electronic channels, such as email. Additionally, I acknowledge that data regarding my interaction with these emails, including the tracking of opens and clicks using hidden pixels within images, may be collected in order to assess the effectiveness of our communications and enhance their quality. For more comprehensive information, kindly refer to our Privacy Policy.
The commercial and industrial (C&I) sector, which ranks as the second-largest category, is projected to experience a compound annual growth rate of 13 percent according to our forecasts. This growth should result in annual additions ranging from 52 to 70 GWh by 2030 for the C&I sector.
You will have the privilege of being the initial recipient of updates from Schneider Electric. In due course, you can anticipate receiving a welcome message. Have a delightful time!
Given these circumstances, it is highly probable that sodium-ion batteries will gain a larger portion of the BESS market. In fact, it is anticipated that a minimum of six manufacturers will commence production of sodium-ion batteries in 2023. Evidently, healthcare providers will need to make choices regarding which technology to invest in. Integrators may consider configuring their systems in a manner that simplifies the transition to sodium-ion batteries once they become readily accessible.
Recognize a neglected requirement within the value chain. In an emerging industry like this, it is beneficial for companies to consider additional products and services they could expand into, either through internal growth or mergers and acquisitions. As an example, is there any hindrance preventing a system integrator from conducting in-house battery packaging? Or collaborating with a battery manufacturer to jointly develop a new cell chemistry? Moreover, is there any limitation preventing a battery manufacturer from incorporating system integration or service capabilities to attract a particular BESS sector, like utilities?
To gain a comprehensive understanding of the potential advantages that come with BESS, it is ideal to divide the market based on user applications and sizes. Within BESS, there are three distinct segments: front-of-the-meter and BTM residential installations, typically ranging below 30 kWh (as shown in Exhibit 1).
The financial strategies for utility-scale Battery Energy Storage Systems (BESS) are greatly influenced by the unique characteristics of the regions in which providers establish themselves. Typically, players in this sector opt for a revenue stacking approach, which involves aggregating incomes from multiple sources. They may engage in supplementary offerings, arbitrage, and capacity auctions. For instance, numerous BESS installations in the United Kingdom presently focus on ancillary services like frequency regulation. In Italy, there are talented players who have achieved success by emerging victorious in one of the country's capacity auctions that prioritize renewable energy. On the other hand, in Germany, the focus is more on evading expensive grid enhancements in order to seize opportunities. The successful players in the FTM utility sector have recognized the importance of tailoring their approach to individual countries and their regulations, rather than relying on a singular, all-encompassing strategy.
From a technological standpoint, the primary factors that customers prioritize when it comes to batteries are cycle life and cost-effectiveness. Presently, lithium-ion batteries are prevailing because they fulfill customer requirements. In the past, the dominant choice for battery chemistry was a nickel manganese cobalt cathode. However, lithium iron phosphate (LFP) has emerged as a more cost-effective alternative, surpassing it in popularity. (Customers of lithium iron phosphate are willing to acknowledge that LFP may have certain limitations compared to nickel batteries, particularly in terms of energy density.) Nevertheless, the scarcity of lithium has led to the exploration of various intriguing and promising battery technologies, with a particular focus on cell-based options like sodium-ion (Na-ion), sodium-sulfur (Na-S), metal-air, and flow batteries.
For further details, technical assistance, help with resolving complaints, and additional support, make contact with our customer care department.
Promote the development of robustness within supply chains. Numerous essential components of BESS (from battery cells to semiconductors in inverters and control systems) depend on intricate supply chains that are vulnerable to disruptions arising from various factors such as scarcities of raw materials and modifications in regulations. When establishing a supply chain strategy, it is important to take into account various factors such as strategic partnerships, multi-sourcing, and local sourcing. Additionally, planning for potential technological changes should not be overlooked. In addition to addressing BESS components, those operating in the industry also face challenges when it comes to engineering, procurement, and construction (EPC) capability and capacity, especially for front-of-the-meter applications. To achieve smooth execution of BESS projects, it is imperative to establish strategic collaborations with prominent EPC companies that have the capacity for large-scale BESS installations.
Additionally, there are the tasks related to system integration, encompassing the comprehensive planning and creation of energy management systems and additional software to enhance the adaptability and utility of BESS. We anticipate these integrators to capture an additional 25 to 30 percent of the profit allocation accessible.
Considering the multitude of customer segments, varying business models, and imminent changes in technology, this question holds significant importance. Here are four strategies that could potentially lead to success in the market:
In conclusion, a percentage ranging from 10 to 20 is linked to sales entities, project development organizations, as well as other endeavors focused on acquiring customers and commissioning (Exhibit 4).
The main clientele for FTM installations consists of utilities, grid operators, and renewable developers who seek to address the sporadic nature of renewables, offer grid stability services, or avoid expensive investments in their grid. Typically, the BESS providers in this sector are either vertically integrated battery manufacturers or prominent system integrators. They will set themselves apart based on factors such as price and scope, dependability, their history of successfully managing projects, and their aptitude for creating energy management systems and software solutions for grid optimization and trading.
Battery Energy Storage Systems (BESS) retain energy during periods of excess generation or low demand and subsequently release it during periods of reduced generation or high demand. Similar to any energy source within a solar PV facility, the operation of BESS necessitates constant monitoring and management. This is accomplished through three different systems.
The Chief Executive Officer of FlexGen, a provider specialized in controlling energy storage software solutions, explains the definition and necessity of upgrading or retrofitting an energy management system (EMS) in operational battery energy storage system (BESS) projects.
The third division comprises public infrastructure, commercial establishments, and industrial facilities. Within this category, energy storage systems will primarily be deployed to assist with load management during peak periods, facilitate the integration of on-site renewable energy sources, optimize self-consumption, serve as a backup power source, and support grid-related services. It is our belief that BESS holds the capacity to decrease energy expenses in these regions by a staggering 80 percent. The case for implementing BESS is particularly compelling in countries like Germany, North America, and the United Kingdom, where demand charges are frequently imposed.
Absolutely, FlexGen offers utility-scale storage solutions that support grid stability, renewable integration, and energy management for utilities, enhancing the overall efficiency and reliability of the power grid.
FlexGen's energy management solutions stand out due to their innovative HybridOS software, which offers unparalleled efficiency, flexibility, and intelligence in energy storage and management. Their commitment to integrating renewable energy sources, along with their expertise in delivering customized solutions and comprehensive lifecycle services, positions FlexGen as a leader in advanced energy management.
FlexGen ensures the reliability of its energy storage systems through advanced design, rigorous testing, and the implementation of HybridOS software, which provides real-time monitoring, predictive maintenance, and intelligent control. Additionally, FlexGen's lifecycle services offer ongoing support and maintenance to maximize system performance and longevity.